Меню

Информативные носители. Внешние носители информации

Интернет

Носитель информации -- предмет, используемый человеком для длительного хранения информации.

Оптические диски

Носители информации в форме диска, информация с которых считывается при помощи лазера. Информация хранится в виде питов(pit - яма) и лендов(land - земля) на слое поликарбоната. Если свет сфокусировался между питами (на ленде), то фотодиод регистрирует максимальный сигнал. В случае, если свет попадает на пит, фотодиод регистрирует ме́ньшую интенсивность света.

Первое поколение

Компакт-диск(CD) - разработан компаниями Sony и Phillips в 1979 году, используется преимущественно для записи аудио-файлов. Имеют объём от 650 Мб до 900 Мб. Разделяются на CD-R(Compact Disc Recordable) для однократной записи и на CD-RW(Compact Disc ReWritable)для многократной записи. Весьма распространены до сих пор.

Второе поколение

Цифровой многоцелевой диск(DVD) - был анонсирован в 1995 году. Благодаря более плотной структуре рабочей поверхности и возможности нанесения её на обе стороны диска, он значительно превосходит компакт-диски в объёме от (1,46 Гб до 17.08 Гб). Также делятся на DVD-R и DVD-RW, DVD+R и DVD+RW, которые более совершенны, чем предыдущие два, и DVD-RAM, допускающий значительно большее количество перезаписей, чем DVD+RW. Наиболее распространённые оптические диски на данный момент.

Цифровой Многослойный Диск(DMD) - оптический диск, разработанный компанией D Data Inc. Диск основан на трехмерной оптической технологии хранения данных, то есть лазер считывает с нескольких рабочих поверхностей одновременно. DMD могут хранить от 22 до 32 Гб двоичной информации. DMD покрыты запатентованными химическими составами, которые реагируют, когда красный лазер освещает особый слой. В этот момент химическая реакция производит сигнал, который в последующем будет считан с диска. Благодаря этому диски могут потенциально вмещать до 100 Гб данных.

Флуоресцентный многоуровневый диск(FMD) - формат оптического носителя, разработанный компанией «Constellation 3D», использующий флуоресценцию вместо отражения для хранения данных, что позволяет работать, соответствуя принципам объёмной оптической памяти и иметь до 100 слоёв. Они позволяют вместить объём до 1 Тб при размерах обычного компакт-диска. Питы на диске заполнены флуоресцентным материалом. Когда когерентный свет из лазера фокусируется на них, они вспыхивают, излучая некогерентные световые волны разных длин. Пока диск чист, свет способен проходить через множество слоёв беспрепятственно. Чистые диски имеют возможность отфильтровывать свет лазера (базируясь на длинах волн и когерентности), достигая при этом более высокого коэффициента отношения сигнал/шум, чем диски, основанные на отражении. Это позволяет иметь множество слоёв.

Третье поколение

Blu-ray Disc(BD) - формат оптического диска, используемый для записи с повышенной плотностью хранения цифровых данных. Современный вариант этого диска был представлен в 2006 году. Своё название(blue ray - синий луч) получил по технологии записи и чтения с помощью коротковолнового синего лазера, что и позволило уплотнить данные на диске. Может вмещать от 8 до 50 Гб.

DVD высокой ёмкости(HD DVD) - аналог предыдущего формата дисков с ёмкостью до 30 Гб.Не поддерживаются с 2008 года, чтобы избежать войны форматов.

Многоцелевые многоуровневые диски высокой ёмкости(HDVMD) - формат цифровых носителей на оптических дисках, предназначенный для хранения видео высокой чёткости и другого высококачественных мультимедийных данных. На одном слое HD VMD-диска помещается до 5 ГБ данных, но за счёт того, что диски являются многослойными (до 20 слоёв) их ёмкость достигает 100 ГБ. В отличие от предыдущих двух форматов использует красный лазер, что позволяет читать их дисководам, поддерживающих CD и DVD диски.

Четвёртое поколение

Голографический многоцелевой диск(HVD) - разрабатываемый перспективный формат оптических дисков, который предполагает значительно увеличить объём хранимых на диске данных по сравнению с Blu-Ray и HD DVD. Он использует технологию, известную как голография, которая использует два лазера: один - красный, а второй - зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обычного компакт-дискового слоя в глубине диска. Предполагаемая ёмкость - до 4 Тб.

Жёсткие диски

Накопитель на жёстких магнитных дисках - запоминающее устройство, основной накопитель в большинстве компьютеров. Принцип действия основан на изменении векторов намагниченности доменов(небольшого участка диска)магнитного диска под действием переменного тока в катушке на конце считывающей головки. Распространены благодаря очень высокой ёмкости и скорости работы. Многие жёсткие диски издают шум. Бытовые диски обычно хранят информацию в объёме до 1 Тб. Бывают также и внешние жёсткие диски, присоединяемые к компьютеру через USB-порт, они не обеспечивают такой же скорости, как и внутренние, но предоставляют ту же большую ёмкость. Помимо это разрабатываются гибридные жёсткие диски с элементами флэш-памяти.

Носители, использующие технологию флеш-памяти

Флеш-память - разновидность полупроводниковой технологии электрически перепрограммируемой памяти. Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области («кармане») полупроводниковой структуры. Достоинствами таких носителей являются компактность, дешевизна, механическая прочность, большой объём, скорость работы и низкое энергопотребление. Серьёзным недостатком данной технологии является ограниченный срок эксплуатации носителей.

USB-флэш-накопитель - запоминающее устройство, изобретённое в 2000 году. Очень популярное, благодаря удобству пользования и универсальности. Может хранить информацию без электричества до 10 лет.

Карта памяти - запоминающее устройство разных разновидностей, используемые под определённые устройство, таких как мобильные телефоны, КПК, авторегистраторы. Наиболее распространён стандарт microSD.

Информационные носители распределяют по четырем параметрам: природа носителя, его назначение, число циклов записи и долговечность.

По природе носители информации бывают вещественно-предметными и биохимическими. Первые - это те, которые можно потрогать, взять в руки, перенести с места на место: письма, книги, флешки, диски, находки археологов и палеонтологов. Вторые имеют биологическую природу и физически к ним прикоснуться нельзя: геном, любая его часть - РНК, ДНК, гены, хромосомы.

По назначению носители информации распределяют на специализированные и широкого назначения. Специализированные - это те, которые созданы только для одного вида хранения информации. Например, для цифровой записи. А широкое назначение - это носитель, на который можно записать информацию разными способами: та же бумага, на ней и пишут, и рисуют.

По числу циклов записи носитель бывает однократным или многократным. На первый можно записать информацию лишь один раз, на второй - много. Пример однократного информационного носителя - диск CD-R, а диск CD-RW уже относится к многократным.

Долговечность носителя - это срок, который он будет хранить информацию. Те, что считаются кратковременными, неизбежно разрушаются: если написать что-нибудь на песке у воды, волна смоет надпись через полчаса или час. А долговременные может уничтожить только случайное обстоятельство - сгорит библиотека или флешка вдруг упадет в канализацию и пролежит в воде много лет.

Делают носители информации из четырех типов материала:

  • бумага, из которой раньше делали перфокарты и перфоленты, а страницы книг делают и теперь;
  • пластик для оптических дисков или бирок;
  • магнитные материалы, нужные для магнитных лент;
  • полупроводники, которые используют для создания компьютерной памяти.

В прошлом список был богаче: информационные носители делали из воска, ткани, из бересты, глины, камня, кости и многого другого.

Чтобы изменить структуру материала, из которого создан информационный носитель, используют 4 типа воздействий:

  • механическое - шитье, резьбу, сверление;
  • электрическое - электрические сигналы;
  • термическое - выжигание;
  • химическое - травление или окрашивание.

Из носителей прошлого самыми ходовыми были перфокарты и перфоленты, магнитные ленты, а потом и 3,5-дюймовые дискеты.

Перфокарты делали из картона, потом протыкали в нужных местах так, что дырочки в картоне напоминали узор, и считывали с них информацию. А перфоленты появились позже, были бумажными и использовались в телеграфе.

Магнитные ленты свели популярность перфокарт и перфолент к нулю. Такие ленты могли и хранить, и воспроизводить информацию - проигрывать записанные песни, к примеру. В это же время появились магнитофоны, на которых можно было слушать и кассеты, и катушки. Но срок годности у магнитных лент был скромный - до 50 лет.

Когда появились дискеты, магнитные ленты ушли в прошлое. Дискеты были маленькие, 3,5 дюйма, и могли хранить до 3 мб информации. Однако они были чувствительными к магнитным воздействиям, да и емкость их не успевала за потребностями людей - нужны были носители, которые могли хранить намного больше данных.

Сейчас таких носителей много: внешние жесткие диски, оптические диски, флешки, HDD боксы и удаленные сервера.

Внешние жесткие диски

Внешние жесткие диски упакованы в компактный корпус, где есть один или два USB-адаптера и система защиты от вибрации. Они могут хранить до 2 ТБ информации.

  • легко подключить: не надо выключать компьютер, возиться с кабелем питания и sata - на внешних жестких дисках есть интерфейс USB0, подключаются они как обычные флешки;
  • легко перевозить: такие девайсы очень маленькие, их запросто можно взять в путешествие, в гости, носить можно даже в кармане, а еще, их довольно просто подключить к домашнему кинотеатру;
  • к компьютеру можно подключить столько жестких дисков, сколько есть USB-портов.
  • скорость передачи информации ниже, чем по sata-подключению;
  • нужна повышенная мощность питания, поэтому требуется двойной USB-кабель;
  • корпус пластиковый, а значит, во время работы девайся слышно щелчки или другой шум.

Однако если диск будет в прорезиненном металлическом корпусе, то шума никто не услышит.

Внешние жесткие диски бывают портативными (2.5) и настольными (3.5). Интерфейс может быть экзотическим - firewire или блютуз, но такие дороже, встречаются они реже и к ним нужен дополнительный блок питания.

Оптические диски

Это компакт-диски, лазерные диски, HD-DVD, мини-диски и Blu-ray. Информация с таких дисков читается с помощью оптического излучения, поэтому их так и назвали.

Оптический диск насчитывает четыре поколения:

  • первое - это лазерный, компакт- и мини-диск;
  • второе - DVD и CD-ROM;
  • третье - HD-DVD и Blu-ray;
  • четвертое - Holographic Versatile Disc и SuperRens Disc.

Компакт-дисками сейчас почти не пользуются. У них маленький объем - 700 МБ, а данные с них считывает лазерный луч. Компакт-диски разделялись на два вида: те, на которые нельзя было ничего записать (CD), и те, на которые записывать было можно (CD-R и CD-RW).

DVD-диски внешне такие же, как компакт-диски, но объем у них значительно больше. У DVD-дисков есть несколько форматов, самыми популярными считаются DVD-5 на 4,37 ГБ и DVD-9 на 7,95 ГБ. Такие диски тоже бывают R - для однократной записи, и RW - для многократной записи.

Диски Blu-ray, имея такой же размер, как CD и DVD, вмещают гораздо больше данных - до 25 и до 50 ГБ. До 25 - это диски с одним слоем записи информации, а до 50 - с двумя. И они также подразделяются на R - однократную запись, и RE - запись многократную.

Флешки

Флеш-накопитель - это очень маленькое устройство, которое с памятью до 64 ГБ и больше. К компьютеру флешки подключают через USB-порт, скорость чтения и записи у них высокая, корпус пластиковый. Внутри у флешки электронная плата с чипом памяти.

Флешку можно подключить к компьютеру и телевизору, а если она в формате Micro-cd, то и к планшету или смартфону. Царапины и пыль, которые могли уничтожить оптические диски, флешке не страшны - у нее небольшая восприимчивость к внешним воздействиям.

HDD боксы

Это вариант, который позволяет использовать обычные жесткие диски стационарных компьютеров как внешние. HDD бокс - это пластиковая коробка с контроллером USB, куда можно поместить обычный жесткий диск и легко перенести информацию напрямую, избегая дополнительного копирования и вставки.

HDD бокс гораздо дешевле внешнего жестка диска, и очень пригодится, если нужно перенести на другой компьютер большое количество информации или даже почти весь раздел жесткого диска.

Удаленные сервера

Это виртуальный способ хранения данных. Информация будет на удаленном сервере, подключиться к которому можно с компьютера, и с планшета, и со смартфона, надо только иметь доступ в интернет.

С физическими носителями информации всегда есть риск потерять данные, поскольку флешка, жесткий или оптический диск могут сломаться. Но с удаленным сервером такой проблемы нет - информация хранится надежно и так долго, как это нужно пользователю. К тому же на удаленных серверах есть резервное хранилище на случай непредвиденных ситуаций.

Совет 2: Виды носителей информации, их классификация и характеристики

Чтобы вести хозяйственную деятельность, заниматься наукой и искусством, человеку во все времена требовались носители информации. Для этой цели использовались самые разные материалы и приспособления. Выбор конкретных носителей информации определялся доступностью материалов и уровнем развития технологий.

Из истории развития носителей информации

В эпоху становления человеческого общества людям хватало стен пещеры, чтобы зафиксировать нужную им информацию. Такая «база данных» целиком уместилась бы да флэш-карте размером в мегабайт. Однако за последние несколько десятков тысяч лет объем информации, которой вынужден оперировать человек, существенно возрос. Теперь для хранения данных широко используются дисковые накопители и облачные хранилища данных.

Считается, что история записи информации и ее хранения началась около 40 тыс. лет назад. Поверхности скал и стены пещер сохранили изображения представителей животного мира позднего палеолита. Гораздо позже в обиход вошли пластинки из глины. На поверхности такого древнего «планшета» человек мог наносить изображения и делать записи посредством заостренной палочки. Когда глиняный состав высыхал, запись фиксировалась на носителе. Недостаток глиняной формы хранения информации очевиден: такие таблички отличались хрупкостью и недолговечностью.

Примерно пять тысяч лет назад в Египте стали использовать более совершенный носитель информации - папирус. Сведения заносили на особые листы, которые изготовлялись из специально обработанных стеблей растения. Этот вид хранения данных был более совершенным: листы папируса легче глиняных табличек, писать на них гораздо удобнее. Данный вид хранения информации дожил в Европе до XI века новой эры.

В другой части света - в Южной Америке - хитроумные инки изобрели тем временем узелковое письмо. Информация в данном случае закреплялась при помощи узлов, которые в определенной последовательности завязывали на нити или веревке. Существовали целые «книги» из узелков, где фиксировались сведения о численности населения империи инков, о налоговых сборах, хозяйственной деятельности индейцев.

Впоследствии основным носителем информации на планете на несколько веков стала бумага. Ее применяли для печатания книг и средств массовой информации. В начале XIX века стали появляться первые перфокарты. Их делали из плотного картона. Эти примитивные машинные носители информации стали широко использовать для механического счета. Они нашли применение, в частности, при проведении переписей населения, их использовали и для управления ткацкими станками. Человечество вплотную приблизилось к технологическому прорыву, который произошел в XX веке. На смену механическим устройствам пришла электронная техника.

Что такое носители информации

Все материальные объекты способны нести в себе какую-либо информацию. Принято считать, что носители информации наделены вещественными свойствами и отражают определенные отношения между объектами действительности. Материальные свойства объектов определяются характеристиками веществ, из которых выполнены носители. Свойства отношений находятся в зависимости от качественных особенностей процессов и полей, посредством которых носители информации проявляются в материальном мире.

В теории информационных систем принято подразделять носители информации по происхождению, форме и размеру. В самом простом случае носители информации делят на:

  • локальные (к примеру, жесткий диск персонального компьютера);
  • отчуждаемые (съемные дискеты и диски);
  • распределенные (ими могут считаться линии связи).

Последний вид (каналы связи) можно при определенных условиях считать как носителями информации, так и средой для ее передачи.

В самом общем смысле носителями информации могут считаться разные по своей форме объекты:

  • бумага (книги);
  • пластинки (фотопластинки, граммофонные пластинки);
  • пленки (фото-, кинопленка);
  • аудиокассеты;
  • микроформы (микрофильм, микрофиша);
  • видеокассеты;
  • компакт-диски.

Многие носители информации известны с древних времен. Это каменные плиты с нанесенными на них изображениями; глиняные таблички; папирус; пергамент; береста. Гораздо позже появились иные искусственные носители информации: бумага, различные виды пластмассы, фотографические, оптические и магнитные материалы.

Информация заносится на носитель посредством изменения каких-либо физических, механических или химических свойств рабочей среды.

Общие сведения об информации и способах ее хранения

Любое природное явление так или иначе связано с сохранением, преобразованием и передачей информации. Она может быть дискретной или непрерывной.

В самом общем смысле носитель информации - это некая физическая среда, которую можно использовать для регистрации изменений и накопления информации.

Требования к искусственным носителям информации:

  • высокая плотность записи;
  • возможность неоднократного использования;
  • большая скорость считывания информации;
  • надежность и долговечность хранения данных;
  • компактность.

Отдельная классификация разработана для носителей информации, применяемых в электронно-вычислительных комплексах. К таким носителям информации относят:

  • ленточные носители;
  • дисковые носители (магнитные, оптические, магнитооптические);
  • флэш-носители.

Такое деление носит условный характер и не является исчерпывающим. При помощи особых устройств на компьютерной технике можно работать с традиционными аудио- и видеокассетами.

Характеристики отдельных носителей информации

В свое время наибольшую популярность получили магнитные носители информации. Данные в них представлены в виде участков магнитного слоя, который наносится на поверхность физического носителя. Сам носитель может иметь вид ленты, карты, барабана или диска.

Информация на магнитном носителе сгруппирована в зоны с промежутками между ними: они необходимы для качественной записи и считывания данных.

Носители информации ленточного типа используются для резервного копирования и хранения данных. Они представляют собой магнитную ленту объемом до 60 Гб. Иногда такие носители имеют вид ленточных картриджей значительно большего объема.

Дисковые носители информации могут быть жесткими и гибкими, сменными и стационарными, магнитными и оптическими. Они имеют обычно форму дисков или дискет.

Магнитный диск имеет вид пластмассового или алюминиевого плоского круга, который покрыт магнитным слоем. Фиксация данных на таком объекте осуществляется путем магнитной записи. Магнитные диски бывают переносными (сменными) или несменными.

Гибкие магнитные диски (флоппи-диски) имеют объем 1,44 Мб. Они упакованы с особые пластмассовые корпуса. Иначе такие носители информации именуют дискетами. Назначение их - временное хранение информации и перенос данных с одного компьютера на другой.

Жесткий магнитный диск нужен для постоянного хранения данных, которые часто используются в работе. Такой носитель представляет собой пакет их сцепленных между собой нескольких дисков, заключенных в прочный герметичный корпус. В обиходе жесткий диск часто называют «винчестером». Емкость такого накопителя может достигать нескольких сотен Гб.

Магнитооптический диск - это носитель информации, помещенный в особый пластиковый конверт, называемый картриджем. Это универсальное и очень надежное вместилище данных. Его отличительная черта - высокая плотность хранимой информации.

Принцип записи информации на магнитный носитель

Принцип записи данных на магнитный носитель основан на использовании свойств ферромагнетиков: они способны сохранять намагниченность после снятия действующего на них магнитного поля.

Магнитное поле создает соответствующая магнитная головка. В ходе записи двоичный код принимает форму электрического сигнала и подается на обмотку головки. Когда ток протекает через магнитную головку, вокруг нее формируется магнитное поле определенной напряженности. Под действием такого поля в сердечнике образуется магнитный поток. Его силовые линии замыкаются.

Магнитное поле взаимодействует с носителем информации и создает в нем состояние, которое характеризуется некоторой магнитной индукцией. Когда импульс тока прекращается, носитель сохраняет свое состояние намагниченности.

Чтобы воспроизвести запись, используют считывающую головку. Магнитное поле носителя замыкается через сердечник головки. Если носитель перемещается, изменяется магнитный поток. В считывающую головку поступает сигнал воспроизведения.

Одна из важных характеристик магнитного носителя информации - плотность записи. Она находится в прямой зависимости от свойств магнитного носителя, типа магнитной головки и ее конструкции.

В русском языке так много понятий, что порой тяжело различить два очень похожих, но все же разных определения. Но есть такие термины, которые не несут в себе дополнительных смыслов, а имеют четкое и понятное толкование. К примеру, понятие «электронный носитель информации». Это определение материального носителя, который записывает, хранит и воспроизводит данные, которые обрабатываются благодаря вычислительной технике.

С чего все началось?

Более общим значением данного термина является «носитель информации» или «информационный носитель». Оно определяет материальный объект или среду, которая используется человеком. При этом такой предмет долго хранит данные, не используя дополнительное оборудование.

Если для хранения информации на электронных носителях нужен источник энергии, то простой носитель данных может оказаться камнем, деревом, бумагой, металлом и другими материалами.

Носителем информации может называться любой объект, который показывает данные, нанесенные на него. Считается, что информационные носители нужны для записи, хранения, чтения, передачи материалов.

Особенности

Нетрудно догадаться, что электронный носитель информации - это разновидность информационного носителя. Он также имеет свою классификацию, которая, хотя и не установлена официально, но используется многими специалистами.

Например, электронные носители могут иметь однократную или многократную запись. Здесь подразумеваются устройства:

  • оптические;
  • полупроводниковые;
  • магнитные.

Каждый из этих механизмов имеет несколько видов оборудования.

Электронный носитель информации - это, прежде всего, ряд преимуществ перед бумажными вариантами. Во-первых, благодаря технологиям объем архивируемых данных может быть практически неограниченным. Во-вторых, сам сбор и подача актуальной информации эргономичные и быстрые. В-третьих, цифровые данные представлены в удобном виде.

Но электронный носитель имеет и свои недостатки. К примеру, сюда можно отнести ненадежность оборудования, в некоторых случаях габариты устройства, зависимость от электроэнергии, а также требования к постоянному наличию аппарата, который бы мог считывать файлы с такого цифрового накопителя.

Разновидность: оптические диски

Электронный носитель информации - это устройство, которое может быть оптическим, полупроводниковым, магнитным. Это единственная классификация такого оборудования.

В свою очередь, оптические устройства также делятся на виды. Сюда относят лазерный диск, компакт-диск, мини-диски, Blu-ray, HD-DVD и так далее. Оптический диск назван так благодаря технологии считывания информации. Чтение с диска происходит с помощью оптического излучения.

Идея этого электронного носителя зародилась давно. Ученые, которые разрабатывали технологию, были удостоены Нобелевской премии. Способ воспроизводить информацию с оптического диска появился еще в 1958 году.

Сейчас оптический электронный носитель имеет 4 поколения. В первом поколении были: лазерный диск, компакт-диск и мини-диск. Во втором поколении популярными стали DVD и CD-ROM. В третьем поколении выделились Blu-ray и HD-DVD. В четвертом поколении активно развиваются Holographic Versatile Disc и SuperRens Disc.

Полупроводниковые носители

Следующий вид электронного носителя информации - это полупроводниковый. Сюда относят флеш-накопители и SSD-диски.

Флеш-память - это самый популярный электронный носитель, который имеет полупроводниковую технологию и программируемую память. Он востребован благодаря своим небольшим размерам, невысокой цене, механической прочности, приемлемому объему, скорости работы и низкому потреблению энергии.

Недостатками такого варианта являются ограниченный срок использования и зависимость от электростатического разряда. Впервые о флеш-накопителе заговорили в 1984 году.

SSD-диск - это полупроводниковый электронный носитель, который также называют твердотельным накопителем. Он пришел на смену жесткому диску, хотя на данный момент полностью не заменил его, а лишь стал дополнением к домашним системам. В отличие от жесткого диска, твердотельный накопитель основан на микросхемах памяти.

Главными преимуществами такого носителя являются его компактные размеры, высокая скорость, износостойкость. Но вместе с этим у него большая стоимость.

Магнитные диски

И последним видом электронного носителя считаются магнитные устройства. К ним относят магнитные ленты, дискеты и жесткие диски. Поскольку первое и второе оборудование сейчас не используется, речь пойдет о ЖД.

Жесткий диск - это устройство, которое имеет произвольный доступ и основано на технологии магнитной записи. На данный момент это основной накопитель большинства современных компьютерных систем.

Его главным отличием от предыдущего вида, дискеты, является то, что запись осуществляется на алюминиевые или стеклянные пластины, которые покрывают слоем ферромагнитного материала.

Другие варианты

Несмотря на то что, говоря об электронных носителях, мы часто вспоминаем устройства, подключаемые к компьютеру, это не значит, что данное понятие применяется только в компьютерной технологии.

Распространение электронного носителя связано с удобством его использования, высокой скоростью записи и чтения. Поэтому это оборудование вытесняет бумажные носители.

Документы

Что такое паспорт с электронным носителем информации? Сначала этот вопрос может загнать человека в тупик. Но если хорошенько поразмыслить, то вспоминается такое понятие, как «биометрический паспорт».

Это государственный документ, который удостоверяет личность и гражданство путешественника в момент его переезда за границу государства и нахождения в другой стране. По сути, перед нами тот же паспорт, но с некоторыми нюансами.

Разница между биометрическим документом и традиционным паспортом в том, что первый является носителем специально вмонтированной микросхемы, которая хранит фотокарточку владельца и его личные данные.

Благодаря небольшой микросхеме можно получить фамилию, имя и отчество владельца документа, его дату рождения, номер паспорта, время выдачи и конец периода действия. По образцу, в микросхеме должны находиться биометрические данные человека. Сюда относят рисунок радужной оболочки глаза либо отпечаток пальца.

Введение документа: преимущества и недостатки

Несмотря на то что биометрический паспорт давно введен многими государствами, некоторые граждане негативно к нему относятся. Но у этого документа есть как преимущества, так и недостатки.

К преимуществам можно отнести то, что прохождение пограничного пункта теперь не занимает много времени. Если в таких местах есть специальное оборудование, которое может считывать микрочип, то прохождение границы становится безопасным и быстрым.

Но биометрический паспорт нравится далеко не всем гражданам. Многие считают, что введение подобного документа является проявлением тотального контроля, за которым стоит правительство США.

Уголовное дело

Развитие электронных носителей информации коснулось многих сфер. Сюда же можно отнести и уголовное дело. В 2012 году в Уголовно-процессуальный кодекс РФ ввели термин электронного носителя информации. Таким образом, подобные устройства могли стать вещественными доказательствами.

Электронные носители информации стали важной деталью при расследовании уголовного дела, при соблюдении некоторых условий. К примеру, данные с носителя должны иметь прямое отношение к расследованию. Кроме того, передачу их должен осуществлять достоверный источник, который можно было бы проверить. Данные должны иметь особый вид, к примеру, представленные видеозаписью, фотографиями, скриншотами и так далее. При изъятии цифровой информации нужно соблюдать установленные законы.

В ходе расследования уголовного дела необходимо вести и учет электронных носителей информации. В этом случае заводится журнал, в котором прописываются все устройства. Каждому присваивается идентификационный номер.

Важность электронных носителей в расследовании уголовного дела является спорным вопросом по сей день. Законодательно подобные устройства не отнесены к какому-либо источнику доказательств. Отсюда могут возникать разногласия.

Выводы

Электронные носители информации для современного человека - настоящая находка. С развитием технологий объемы архивов, которые хранят данные, становятся все больше. С каждым годом появляются новые возможности передачи и чтения информации.

Человеческая цивилизация за время своего существования нашла множество способов фиксировать информацию. С каждым годом ее объемы растут в По этой причине меняются и носители. Именно об этой эволюции и пойдет речь ниже.

Пережитки прошлого

Древнейшими памятниками человеческой деятельности можно считать наскальные рисунки, на которых изображались животные, бывшие целями охоты. Первые материальные носители информации были природного происхождения.

Настоящим прорывом можно считать появление письменности у шумеров, живших в современном Ираке и использовавших не камень, а глиняные таблички, которые обжигались после письма. Таким образом, их сохранность значительно увеличивалась. Однако скорость, с которой фиксировались знания, была крайне малой.

Также можно отметить египетский папирус, воск, шкуры, на которых впервые начали писать в Персии. В Азии использовался бамбук и шелк. Древние индейцы имели уникальную систему узелкового письма. На Руси в ходу была береста, которую и сегодня находят археологи.

Бумага

Бумажные носители информации совершили переворот, масштаб которого сложно переоценить. Несмотря на то что первые аналоги целлюлозного материала были получены китайцами еще во II веке, общедоступным он стал только в XIX столетии.

С бумагой связано и появление книг. В 1450-ых немецкий изобретатель изобрел ручной типографский станок, с помощью которого издал два экземпляра Библии. Эти события послужили точкой отсчета для новой эпохи массового книгопечатания. Именно благодаря ему знание перестало быть уделом тонкой прослойки человечества, а стало доступным для каждого желающего.

Сегодняшняя бумага бывает газетной, офсетной, мелованной и т. д. Ее выбор зависит от конкретных целей. И хотя белое полотно пользуется спросом как никогда, свое инновационное положение оно уже уступило.

Перфокарты и перфоленты

Следующий толчок в своем развитии информационные носители получили в начале XIX века, когда появились первые картонные перфокарты. В определенных местах ставились отверстия, с помощью которых считывались данные. Первоначально технология использовалась для управления

Интерес к новинке возрос после того, как в США ее стали использовать для более удобного и быстрого подсчета результатов переписи населения страны в 1890 году. Производством карт занималась компания IBM в будущем ставшая пионером компьютерных технологий. Расцвет технологии пришелся на середину XX века. Именно тогда стала распространяться систематизировавшая и обобщившая самые разные данные.

Первые машинные носители информации представляли собой также и перфоленты. Производились они из бумаги и использовались в телеграфах. Благодаря своему формату ленты позволяли легко производить ввод и вывод. Это сделало их незаменимыми вплоть до появления магнитных конкурентов.

Магнитная лента

Как бы не были хороши прежние внешние носители информации, они не могли воспроизводить то, что фиксировали. Данная проблема была решена с появлением магнитной ленты. Она представляла собой гибкую основу, покрытую несколькими слоями, на которых и записывается информация. В качестве рабочей среды выступали различные химические элементы: железо, кобальт, хром.

Магнитные носители информации сделали рывок в звукозаписи. Именно эта инновация позволила новой технологии быстро прижиться в Германии в 30-ые годы. Прежние устройства (фонографы, граммофоны, патефоны) отличались механическим характером и были не практичны. Большое распространение получили магнитофоны катушечного и кассетного типа.

В 50-ые годы были предприняты попытки использовать данные разработки как компьютерные носители информации. Магнитные ленты внедрялись в персональные компьютеры в 80-ые годы. Их популярность в целом объяснялась такими преимуществами. как большая емкость, сравнительная дешевизна производства и низкое энергопотребление.

Недостатком лент можно считать срок годности. С течением времени они размагничиваются. В лучшем случае данные сохраняются на 40 - 50 лет. Тем не менее, это не помешало формату стать популярным во всем мире. Отдельно стоит упомянуть о видеокассетах, расцвет которых пришелся на окончание XX века. Магнитные носители информации стали основой теле и радиовещания нового типа.

Жесткие диски

Тем временем развитие отрасли продолжалось. Информационные носители большого объема требовали модернизации. Первые жесткие диски или винчестеры были созданы в 1956 году силами IBM. Однако они были непрактичны. Их размер превышал ящик, а вес почти равнялся тонне. При этом объем хранимых данных не превышал 3,5 мегабайт. Однако в дальнейшем стандарт развивался, и к 1995 году была преодолена планка в 10 гигабайт. А еще через 10 лет в продаже появились модели Hitachi объемом в 500 гигабайт.

В отличие от гибких аналогов жесткие диски содержали алюминиевые пластины. Данные воспроизводятся посредством считывающих головок. Они не прикасаются к диску, а работают на расстоянии нескольких нанометров от него. Так или иначе принцип работы винчестеров похож на характеристики магнитофонов. Основная разница заключается в физических материалах, используемых для производства устройств. Жесткие диски стали основой персональных компьютеров. Со временем подобные модели стали выпускаться совмещенно вместе с накопителями, приводами и блоком электроники.

Помимо основной памяти, необходимой для содержания данных, жесткие диски обладают определенным буфером, необходимым для сглаживания скоростей чтения с устройства.

3,5-дюймовые дискеты

Одновременно с этим шло движение вперед в сфере малых форматов. Знание магнитных свойств пригодилось при создании дискет, данные с которых считывались с помощью специального дисковода. Первый подобный аналог был представлен IBM в 1971 году. Плотность записи на такие информационные носители составляла до 3 мегабайт. Основой дискеты был гибкий диск, покрывавшийся специальным слоем из ферромагнетиков.

Главное достижение - уменьшение физических размеров носителя - сделало данный формат главным на рынке на протяжении четверти века. Только в США в 80-е ежегодно производилось до 300 миллионов новых дискет.

Несмотря на массу преимуществ, новинка имела и недостатки - чувствительность к магнитному воздействию и малая емкость по сравнению с все увеличивающимися потребностями рядового пользователя компьютера.

Компакт-диски

Первым поколением оптических носителей стали компакт-диски. Их прообразом были еще грампластинки. Однако новые внешние носители информации производились из поликарбоната. Диск из этого вещества получил тончайшее покрытие из металла (золото, серебро, алюминий). Для защиты данных он покрывался специальным лаком.

Пресловутый CD был разработан силами Sony и запущен в массовое производство в 1982 году. В первую очередь формат получил бешеную популярность за счет удобной звукозаписи. Объем в несколько сот мегабайт позволил вытеснить сначала виниловые проигрыватели, а после и магнитофоны. Если первые уступали в объеме информации, то вторые отличались худшим качеством звука. Кроме того новый формат отправил в прошлое дискеты, которые не только вмещали меньше данных, но и были не слишком надежны.

Компакт-диски стали причиной революции в сфере персональных компьютеров. Со временем все гиганты отрасли (например, Apple) перешли на производство ПК вместе с дисководами, поддерживающими формат CD.

DVD и Blue-Ray

Оптические информационные носители первого поколения продержались на Олимпе хранения данных недолго. В 1996 году появился DVD, который по объему был больше своего предка в шесть раз. Новый стандарт позволил записывать видео большей длительности. Под него быстро подстроилась киноиндустрия. Фильмы на DVD стали общедоступными по всему миру. Принцип работы и кодирования информации по сравнению с компакт-дисками остался тот же.

Наконец в 2006 году был запущен новый, на сегодняшний день последний формат оптического носителя информации. Объем стал исчисляться сотнями гигабайт. Благодаря этому обеспечивается лучшее качество записи звука и видео.

Войны форматов

На протяжении последних лет участились конфликты между несовместимыми форматами хранения информации. Внешние носители разных производителей на очередном витке развития отрасли конкурируют между собой за монополию в формате.

Одним из первых подобных примеров можно назвать конфликт между фонографом Эдисона и граммофоном Берлинера в 10-е годы XX века. В дальнейшем подобные споры возникали между компакт-кассетами и 8-дорожечными аудиокассетами; VHS и Betamax; MP3 и AAC и т. д. Последней в этом ряду стала «война» между HD DVD и Blue-Ray, которая окончилась победой последнего.

Флеш-накопители

Примеры носителей информации не могут обойтись без упоминания USB-флеш-накопителей. Первый Universal Serial Bus был разработан в середине 90-х годов. На сегодняшний день существует уже третье поколение этого Шина позволяет присоединить к персональному компьютеру периферийное устройство. И хотя эта проблема существовала задолго до появления USB, решена она была только в последнее десятилетие.

Сегодня каждый компьютер обладает узнаваемым гнездом, с помощью которого к компьютеру можно подключить мобильный телефон, плеер, планшет и т. д. Быстрая передача данных любого формата сделало USB действительно универсальным инструментом.

Наибольшую популярность на основе данного интерфейса получили флеш-накопители или в просторечии флешки. Такое устройство обладает USB-разъемом, микроконтроллером, микросхемой, и светодиодом. Все эти детали сделали возможным держать в одном кармане гигабайты информации. По своему уступает даже дискетами, обладавшим объемом в 3 мегабайта. В разы увеличился объем устройств, где осуществляется хранение информации. Носители информации, напротив, имеют тенденцию к физическому уменьшению.

Универсальность разъема позволяет накопителям работать не только с персональными компьютерами, но и с телевизорами, DVD-проигрывателями и другими устройствами, обладающими технологией USB. Огромным преимуществом по сравнению с оптическими аналогами стала меньшая восприимчивость к внешнему воздействию. Флешке не страшны царапины и пыль, бывшие смертельной угрозой для CD.

Виртуальная реальность

В последние годы компьютерные носители информации уступают позиции виртуальной альтернативе. Так как сегодня легко подключить ПК к Глобально Сети, информация хранится на общих серверах. Удобства неоспоримы. Теперь чтобы получить доступ к своим файлам, пользователю вовсе не нужен физический носитель. Для взаимодействия с данными на расстоянии достаточно находиться в зоне доступа беспроводного Wi-Fi соединения и т. д.

Кроме того, данное явление помогает избежать недоразумений с выходом из строя физических накопителей, уязвимых к повреждениям. Удаленные сервера, связь с которыми поддерживается сигналом, не пострадают, а в случае непредвиденных ситуаций там существуют резервные хранилища данных.

Вывод

На протяжении всей истории - от наскальных рисунков до виртуальных бит - человек стремился сделать информационные носители объемнее, надежнее и доступнее. Это стремление привело к тому, что сегодня мы живем в эпоху, которую не без основания называют веком информационного общества. Прогресс дошел до того, что теперь люди в своей повседневной жизни просто захлебываются в потоке данных. Возможно информационные носители, виды которых все множатся, кардинально изменятся, согласно требованиям современенного человека.

Человек всегда стремился не только узнать как можно больше об окружающем мире, но и передать всю накопленную информацию будущим поколениям. В данной статье мы рассмотрим, хотя и кратко, развитие способов хранения и передачи информации, эволюцию информационных носителей, начиная от каменной стены в пещере и заканчивая последними разработками в сфере высоких технологий.

Преданья старины глубокой...

Вскоре, с появлением первых цивилизаций пиктография преобразуется в иероглифику и клинопись. В новой знаковой системе уже появились абстрактные понятия, исчисление и др. Да и сама знаковая система по размерам стала меньше.

Носители информации также изменились: теперь каменные стены стали рукотворными, резьба по камню стала более искусной. Также появились компактные носители информации: папирусные листы в Египте и глиняные таблички в Междуречье.

Чем ближе к нашим дням, тем дешевле и компактнее становились носители информации, объем информации при этом увеличивался на порядки, языковая знаковая система становилась все проще.

От папируса человечество перешло к пергаменту, от пергамента – к бумаге. От иероглифики к алфавитному письму (даже сегодняшние иероглифические языки – китайский, японский, корейский – имеют в своей основе стандартный алфавитный набор).

Вот так за несколько абзацев мы окинули взором прошлое языка и носителей информации и, практически, вплотную подошли к основной теме.

Эволюция носителей информации в XX-XXI вв

Перфокарты и перфоленты

С развитием машиностроения и автоматизации производства стало необходимо программирование станков и машин – задание последовательного набора операций для рационализации производства. Для этого был создан двоичный язык (0/1 – выкл/вкл), а первым носителем информации на двоичном языке стала перфокарта. Лист из плотной бумаги разбивался на определенное количество ячеек, одни из них пробивались, другие оставались целыми. Стандартная перфокарта несла на себе информацию в 80 символов.

Позднее по тому же принципу работы стала использоваться перфолента – рулон бумажной или нитроцеллюлозной ленты с пробитыми отверстиями. Плюсом перфоленты была относительно высокая скорость чтения (до 1500 Б\сек), но низкая прочность ленты и невозможность ручного редактирования информации (к примеру, перфокарту можно было вытащить из колоды и вручную пробить необходимые биты).

Магнитная лента

На смену бумажным носителям пришли магнитные. Сначала это была особым образом намагниченная проволока (такой носитель и сейчас используется в черных ящиках самолетов), затем ее сменила гибкая магнитная лента, которая наматывалась в бобины или компакт-кассеты. Принцип записи в чем-то схож с перфорированием. Магнитная лента разделяется по ширине на несколько независимых дорожек; проходя через магнитную записывающую головку, необходимый участок ленты намагничивается (аналогично пробитому участку перфоленты), впоследствии намагниченный участок будет считываться вычислительной техникой как 1, не намагниченный – как 0.

Гибкие магнитные диски

Вслед за магнитной лентой был изобретен гибкий магнитный диск – круг из плотного гибкого пластика с нанесенным на поверхность магнитным слоем. Первые гибкие диски были восьмидюймовыми, позднее им на смену пришли уже более нам привычные 5,25-дюймовые и 3,5-дюймовые. Последние продержались на рынке носителей информации вплоть до середины 2000-х годов.

Накопители на жестких магнитных дисках

Параллельно гибким магнитным носителям развивались носители на жестких магнитных дисках (НЖМД, жесткий диск, HDD). Первая рабочая модель HDD была создана в 1956 году компанией IBM (модель IBM 350). Объем IBM 350 был 3,5 Мб, что по тем временам было достаточно много. По размерам первый HDD был как большой холодильник и весил чуть меньше тонны.

За тридцать лет размеры жесткого диска удалось уменьшить до формата 5,25-дюйма (размер оптического привода), еще через десять лет жесткие диски стали привычного нам 3,5-дюймового формата.

Объем в 1 Гбайт был преодолен в середине 1990-х годов, а в 2005 году был достигнут максимальный объем для продольной записи – 500 Гб. В 2006 году был выпущен первый жесткий диск с перпендикулярным методом записи объемом в 500 Гб. В 2007 году пройден рубеж в 1 Тб (модель выпущена компанией Hitachi). На данный момент самый большой объем коммерческой модели HDD составляет 3 Тб.

Флеш-память - разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Благодаря компактности, дешевизне, механической прочности, большому объему, скорости работы и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах и носителях информации.

Различают два основных типа флеш-памяти: NOR и NAND .

NOR-память используется в качестве энергонезависимой памяти небольшого объема, требующей быстрого доступа без аппаратных сбоев (кэш микропроцессора, микросхемы POST и BIOS).

NAND-память используется в большинстве электронных устройств в качестве основного носителя информации (сотовые телефоны, телевизоры, медиаплееры, игровые приставки, фоторамки, навигаторы, сетевые маршрутизаторы, точки доступа и т.д.). Так же NAND-память используется в SSD-накопителях, альтернативе жестких магнитных дисков, и в качестве кэш-памяти в гибридных жестких дисках. Так же не стоит забывать и о флэш-картах всех форм-факторов и типов подключения.

Самый весомый минус флэш-памяти – ограниченное число циклов записи на носитель. Связано это с самой технологией работы перепрограммируемой памяти.

Оптические диски

Данные носители представляют из себя диски из поликарбоната с нанесенным на одну из сторон специального металлического покрытия. Запись и последующее чтение проводится с помощью специального лазера. Во время записи на металлическом покрытии лазер проделывает специальные ямки (питы), которые при последующем чтении лазерным дисководом будут читаться как «1».

Все развитие оптических носителей можно разделить на четыре части:

Первое поколение: лазерные диски, компакт-диски, магнитооптические диски. Основная особенность – относительно дорогие диски небольшого объема, приводы обладают большим энергопотреблением (напрямую связано с технологией записи и чтения дисков). Компакт-диски немного выбиваются из этого определения (видимо поэтому они и заняли главенствующее положение до появления второго поколения оптических дисков).

Второе поколение: DVD, MiniDisc, Digital Multilayer Disk, DataPlay, Fluorescent Multilayer Disc, GD-ROM, Universal Media Disc. Что отличает второе поколение оптических дисков от первого? В первую очередь, высокая плотность записи информации (в 6-10 раз). Кроме DVD, в основном имеют специализированное применение (MD – для аудиозаписей, UMD – для приставок Sony PlayStation). Кроме DVD, всем остальным форматам требуется дорогое оборудование для записи и чтения информации (особенно, DMD и FMD, в которых используется многослойная и многомерная технологии хранения).

Третье поколение: Blu-ray Disc, HD DVD, Forward Versatile Disc, Ultra Density Optical, Professional Disc for DATA, Versatile Multilayer Disc. Данные оптические диски необходимы в для хранения видео высокой четкости. Основная особенность - использование сине=фиолетового лазера для записи и чтения информации в место красного (кроме VMD). Это позволяет еще больше увеличить плотность записи (в 6-10 раз по сравнению со вторым поколением).

Как и в любой эволюции, в развитии оптических дисков есть основная ветвь развития и побочные ветви. В качестве основной ветви выступают типы оптических дисков, получившие наибольшее распространение и наибольший коммерческий успех: компакт-диски, DVD, Blu-Ray. Остальные типы оптических дисков либо зашли в тупик в своем развитии, либо имеют специализированное применение.

Четвертое поколение (ближайшее будущее) : Holographic Versatile Disc. Основной революционной технологией в развитии оптических носителей информации считается технология голографической записи, позволяющая увеличить плотность записи на оптический диск примерно в 60-80 раз. Первые голографические диски были представлен еще в 2006 году, а сам технологический стандарт был окончательно утвержден в 2007 году. Но воз пока и ныне там. В 2010 году было объявлено, что преодолена планка объема носителя в 515 Гб, но данная модель голографического диска не была пущена в производство.